University of Transnational Business Law

Search
Go to content

Main menu

8.7 Review Exercises and Sample Exam

CIRRICULUM > Subjects > Beginning Algebra



This is “Review Exercises and Sample Exam”, section 8.7 from the book Beginning Algebra (v. 1.0). For details on it (including licensing), click here.








For more information on the source of this book, or why it is available for free, please see the project's home page. You can browse or download additional books there.

Has this book helped you? Consider passing it on:






Help Creative Commons

Creative Commons supports free culture from music to education. Their licenses helped make this book available to you.





Help a Public School

DonorsChoose.org helps people like you help teachers fund their classroom projects, from art supplies to books to calculators.


Previous Section

Table of Contents

Next Section  



8.7 Review Exercises and Sample Exam


Review Exercises

(Assume all variables represent nonnegative numbers.)

Radicals

Simplify.

1. 36

2. 425

3. −16

4. −9

5. 1253

6. 3 −83

7. 1643

8. −5 −273

9. 40

10. −350

11. 9881

12. 1121

13. 5 1923

14. 2 −543

Simplifying Radical Expressions

Simplify.

15. 49x2

16. 25a2b2

17. 75x3y2

18. 200m4n3

19. 18x325y2

20. 108x349y4

21. 216x33

22. −125x6y33

23. 27a7b5c33

24. 120x9y43

Use the distance formula to calculate the distance between the given two points.

25. (5, −8) and (2, −10)

26. (−7, −1) and (−6, 1)

27. (−10, −1) and (0, −5)

28. (5, −1) and (−2, −2)

Adding and Subtracting Radical Expressions

Simplify.

29. 83+33

30. 1210−210

31. 143+52−53−62

32. 22ab−5ab+7ab−2ab

33. 7x−(3x+2y)

34. (8yx−7xy)−(5xy−12yx)

35. 45+12−20−75

36. 24−32+54−232

37. 23x2+45x−x27+20x

38. 56a2b+8a2b2−224a2b−a18b2

39. 5y4x2y−(x16y3−29x2y3)

40. (2b9a2c−3a16b2c)−(64a2b2c−9ba2c)

41. 216x3−125xy3−8x3

42. 128x33−2x⋅543+3 2x33

43. 8x3y3−2x⋅8y3+27x3y3+x⋅y3

44. 27a3b3−3 8ab33+a⋅64b3−b⋅a3

Multiplying and Dividing Radical Expressions

Multiply.

45. 3⋅6

46. (35)2

47. 2(3−6)

48. (2−6)2

49. (1−5)(1+5)

50. (23+5)(32−25)

51. 2a23⋅4a3

52. 25a2b3⋅5a2b23

Divide.

53. 724

54. 104864

55. 98x4y236x2

56. 81x6y738y33

Rationalize the denominator.

57. 27

58. 63

59. 142x

60. 1215

61. 12x23

62. 5a2b5ab23

63. 13−2

64. 2−62+6

Rational Exponents

Express in radical form.

65. 71/2

66. 32/3

67. x4/5

68. y−3/4

Write as a radical and then simplify.

69. 41/2

70. 501/2

71. 42/3

72. 811/3

73. (14)3/2

74. (1216)−1/3

Perform the operations and simplify. Leave answers in exponential form.

75. 31/2⋅33/2

76. 21/2⋅21/3

77. 43/241/2

78. 93/491/4

79. (36x4y2)1/2

80. (8x6y9)1/3

81. ( a 4/3 a 1/2)2/5

82. (16 x 4/3 y 2)1/2

Solving Radical Equations

Solve.

83. x=5

84. 2x−1=3

85. x−8+2=5

86. 3x−5−1=11

87. 5x−3=2x+15

88. 8x−15=x

89. x+41=x−1

90. 7−3x=x−3

91. 2(x+1)=2(x+1)

92. x(x+6)=4

93. x(3x+10)3=2

94. 2x2−x3+4=5

95. 3(x+4)(x+1)3=5x+373

96. 3x2−9x+243=(x+2)23

97. y1/2−3=0

98. y1/3+3=0

99. (x−5)1/2−2=0

100. (2x−1)1/3−5=0


Sample Exam

In problems 1–18, assume all variables represent nonnegative numbers.

1. Simplify.
1.100
2.−100
3.−100

2. Simplify.
1.273
2.−273
3.−273

3. 12825

4. 1921253

5. 512x2y3z

6. 250x2y3z53

Perform the operations.

7. 524−108+96−327

8. 38x2y−(x200y−18x2y)

9. 2ab(32a−b)

10. (x−2y)2

Rationalize the denominator.

11. 102x

12. 14xy23

13. 1x+5

14. 2−32+3

Perform the operations and simplify. Leave answers in exponential form.

15. 22/3⋅21/6

16. 104/5101/3

17. (121a4b2)1/2

18. (9 y 1/3 x 6)1/2y1/6

Solve.

19. x−7=0

20. 3x+5=1

21. 2x−1+2=x

22. 31−10x=x−4

23. (2x+1)(3x+2)=3(2x+1)

24. x(2x−15)3=3

25. The period, T, of a pendulum in seconds is given the formula T=2πL32, where L represents the length in feet. Calculate the length of a pendulum if the period is 1½ seconds. Round off to the nearest tenth.


Review Exercises Answers

1: 6

3: Not a real number

5: 5

7: 1/4

9: 210

11: 729

13: 20 33

15: 7x

17: 5xy3x

19: 3x2x5y

21: 6x

23: 3a2bc⋅ab23

25: 13

27: 229

29: 113

31: 93−2

33: 4x−2y

35: 5−33

37: −x3+55x

39: 12xyy

41: 4 x3−5 xy3

43: 2x⋅y3

45: 32

47: 6−23

49: −4

51: 2a

53: 32

55: 7xy26

57: 277

59: 72xx

61: 4x32x

63: 3+2

65: 7

67: x45

69: 2

71: 2 23

73: 1/8

75: 9

77: 4

79: 6x2y

81: a1/3

83: 25

85: 17

87: 6

89: 8

91: −1/2, −1

93: 2/3, −4

95: −5, 5/3

97: 9

99: 9


Sample Exam Answers

1:
1.10
2.Not a real number
3.−10

3: 825

5: 10xy3yz

7: 146−153

9: 6a2b−2ba

11: 52xx

13: x−5x−25

15: 25/6

17: 11a2b

19: 49

21: 5

23: −1/2, 1/3

25: 1.8 feet


Previous Section

Table of Contents

Next Section  
 

 
Back to content | Back to main menu